Sharp Constant for Poincaré-Type Inequalities in the Hyperbolic Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Inequalities for Trigonometric and Hyperbolic Functions

We establish several sharp inequalities for trigonometric and hyperbolic functions. Our results sharpen some known inequalities. Mathematics subject classification (2010): 26D05, 26D07.

متن کامل

On Friedrichs – Poincaré - type inequalities ✩

Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the ine...

متن کامل

Gromov Hyperbolic Spaces and the Sharp Isoperimetric Constant

In this article we exhibit the largest constant in a quadratic isoperimetric inequality which ensures that a geodesic metric space is Gromov hyperbolic. As a particular consequence we obtain that Euclidean space is a borderline case for Gromov hyperbolicity in terms of the isoperimetric function. We prove similar results for the linear filling radius inequality. Our theorems strengthen and gene...

متن کامل

On Jordan Type Inequalities for Hyperbolic Functions

has been in the focus of these studies and many refinements have been proved for it by Wu and Srivastava 9, 10 , Zhang et al. 11 , J.-L. Li and Y.-L. Li 5, 12 , Wu and Debnath 13–15 , Özban 16 , Qi et al. 17 , Zhu 18–29 , Sándor 30, 31 , Baricz and Wu 32, 33 , Neuman and Sándor 34 , Agarwal et al. 35 , Niu et al. 36 , Pan and Zhu 37 , and Qi and Guo 38 . For a long list of recent papers on this...

متن کامل

Sharp upper bounds on resonances for perturbations of hyperbolic space

For certain compactly supported metric and/or potential perturbations of the Laplacian on H, we establish an upper bound on the resonance counting function with an explicit constant that depends only on the dimension, the radius of the unperturbed region in H, and the volume of the metric perturbation. This constant is shown to be sharp in the case of scattering by a spherical obstacle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Vietnamica

سال: 2018

ISSN: 0251-4184,2315-4144

DOI: 10.1007/s40306-018-0269-9